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Abstract

A general method of direct identification of absorption and scattering coefficients and phase function of porous

media, assumed statistically homogeneous and isotropic, has been developed for wavelengths small in regard of the

typical structure length (i.e. by neglecting diffraction). This method is here limited to a transparent fluid phase and an

opaque solid phase. Diffuse and specular reflection laws and combination of these laws are considered. First results have

been obtained for sets of Dispersed radius Overlapping Opaque Spheres (DOOS) in a transparent fluid phase, or sets of

Dispersed radius Overlapping Transparent Spheres (DOTS) in an opaque solid phase. In the case of DOOS models, the

absorption and scattering coefficients have the same analytical expressions as those characterizing the optically thin

limit for any porous medium. For DOTS models, these coefficients have been, for porosity higher than 0.65, identified

from Monte Carlo calculations versus the porosity or the specific area per unit volume of the fluid phase. For DOOS

models, the phase functions have been expressed by a simple analytical expression in the case of a specular reflection

law, and derived from Monte Carlo calculations in the case of the diffuse reflection law. For DOTS models, phase

function have been numerically calculated from Monte Carlo calculations. The case of the combination of the two

reflection laws is finally discussed.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

At high temperature, radiative transfer has to be

accurately taken into account in many applications in-

volving porous media of various types, such as fluidized

and packed beds, catalytic reactors and fibers or foams

in spatial thermal shields, etc. In the particular case of

combustion within a porous medium, it has been em-

phasized [1] that radiative transfer inside the porous

medium plays a prominent role in the flame stabilization

and that scattering effects cannot be neglected. Predic-

tion and optimization of the performances of such sys-

tems require that the radiative properties of the medium

are characterized. Unfortunately, there is often a lack of

such data.
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The modeling of radiative transfer at a local scale in a

porous structure with an opaque solid phase and a

transparent fluid phase, taking into account absorption

and reflection phenomena, is generally unaffordable for

two reasons: (i) the medium structure is often only sta-

tistically known; (ii) huge calculation times and storage

capacities would be required. On the other hand, a po-

rous medium can, under some validity conditions, be

treated as a continuous homogeneous absorbing and

scattering medium. If the homogenization procedure is

valid, the radiative properties of this equivalent medium

have to be determined.

Many methods of characterization of radiative

properties of porous media, considered as semi-trans-

parent media, have been developed and a survey can be

found in [2]. Some authors [3–6] have predicted the ra-

diative properties of porous media from the geometric

optics approximation and taken into account a small
ed.
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corrective term associated with diffraction. In the last

reference, some parameters are also identified by using

reflectance and transmittance measurements. Many

studies are mainly based on these parameter identifica-

tion methods or on inverse techniques. For a randomly

packed bed of identical opaque spheres, equivalent ab-

sorption and scattering coefficients and parameters of a

phase function of an arbitrary chosen type have been

identified from experimental data of hemispherical

transmittances and reflectances by using a least square

fit approach and a discrete ordinate radiative transfer

model [7]. Similar studies have been carried out for

ceramics [8] or polyurethane foam [9]. An advantage of

such a method is to be directly applied to an actual

porous medium. Drawbacks are that radiative inverse

problems are often ill-conditioned and the practical in-

version requires to impose a particular type of phase

function (isotropic, Henyey–Greenstein. . .) and an ETR
resolution method.

Some authors have used a Monte Carlo approach to

calculate transmittances, reflectances or intensities in

porous media, at a local scale. By identifying these

results with corresponding results obtained from a

radiative transfer model applied to an equivalent semi-

transparent medium, they have deduced values of

extinction coefficient b, absorption coefficient j and

scattering coefficient r, possibly depending on fre-

quency. In a reference work [10], j and r have been
identified by comparison with a two flux model for a

randomly packed bed of non-overlapping identical

spheres. Another study [11] has been carried out on the

same bases for the same system. A three-dimensional

calculation of the transmittance has been done, by a

Monte Carlo method, for a finite bed of the same type

[12]. A similar study [13], dedicated to fibrous media,

deals with the calculation by a Monte Carlo method of

the emittance of a set of semi-infinite cylinders. A Monte

Carlo method has also been used in the determination,

in an inverse problem, of both the albedo and the

asymmetry parameter g of a medium of known extinc-

tion coefficient [14]. Other authors have shown that the

Monte Carlo approach is practically the only way for

taking into account shadow effects for a set of spheres,

but do not modelize the coherence effects associated with

dependent scattering [15–17]. In the last reference, a

model of local coupling between radiation and conduc-

tion is proposed, but is limited to locally optically thick

media. The Monte Carlo method gives a great amount

of information on radiative transfer within the medium

and enables to define a criterion for the homogenization

availability. On the other hand, this method requires a

precise knowledge of the porous morphology and of

radiative properties of both the solid and fluid phases.

The Monte Carlo method provides also a good under-

standing of the physics of radiative transfer which could

ameliorate experimental methods.
The present paper deals with the modeling of a real

porous medium as a continuous equivalent absorbing

and scattering medium, characterized by a non-iso-

tropic phase function. The medium morphology is as-

sumed perfectly known and statistically isotropic and

homogeneous. In principle, this morphology can be

determined by experimental techniques. We assume

that the fluid phase of the porous medium is trans-

parent, and the solid phase is opaque, of known radi-

ative properties at the local scale. Furthermore, we

consider that the typical pore scale is much larger than

the considered wavelength. This hypothesis is indepen-

dent of the wavelength range. Consequently, we assume

that the geometrical optics laws are valid in the medium

at the local scale and that no diffraction effect occurs.

In the same manner, we do not take into account

polarization effects. In conclusion, scattering is here, at

the continuous medium scale, a modeling of the re-

flection phenomena.

In the chosen local treatment of the medium, the

extinction, absorption and scattering probabilities are

calculated from a Monte Carlo technique. As far as

the extinction, absorption and scattering coefficients

can be defined, these coefficients are obtained by a

direct identification of the previous probabilities with

the corresponding expressions of the continuous me-

dium approach. One originality of this work is to

identify the previous quantities, directly from their

definitions, without using a radiative transfer model

based on the radiative transfer equation as commonly

done [10,11], etc. When a scattering coefficient is de-

fined, the corresponding phase function is simply de-

duced, from the application of the reflection laws to

the medium in the local approach. This direct obten-

tion of the phase function is also original. Section 2

deals with this general identification method for actual

porous media.

Section 3 is an application of the method to a porous

medium modeled either by a set of overlapping spheres

of fluid, of centers randomly distributed in the solid

phase or, on the contrary, of overlapping solid spheres,

of centers randomly distributed in the fluid phase, which

is another originality of this work. Both the radius and

center location distributions could be adjusted from

experimental results. Many actual porous media can be

modeled by sets of spheres, in particular when they have

been manufactured from spherical material elements,

which have been removed at high temperature. For in-

stance, catalytic burners made of cordierite are of the

first previously defined type. Results related to the ex-

tinction, scattering and absorption coefficients are given

and discussed in Section 3.

Results related to the scattering phase function are

given and discussed in Section 4. The implementation of

the data in radiative transfer applications is discussed in

Section 5.
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2. General identification method

This section deals with the principles of a general

identification method, which can be applied to statisti-

cally homogeneous and isotropic porous media, char-

acterized by an opaque solid phase and a transparent

fluid phase, as long as the identification with an equiv-

alent semi-transparent medium can be carried out.

2.1. Extinction and absorption coefficients

An originality of the present method is to identify the

absorption and scattering coefficients and the phase

function, directly from their physical definitions. This

purpose is shown in Fig. 1a and b, which deal with the

porous medium local approach and the continuous

medium approach, respectively. As the porous medium

is assumed statistically isotropic, we consider only an

incident ray in an arbitrary given direction. In this actual

medium, the elementary extinction, absorption and

scattering phenomena affect any ray, in the given di-

rection, issued from any point of the fluid phase of the

plane cross-section s ¼ 0 of Fig. 1a. As long as the po-
rous medium is statistically homogeneous, the choice of

a current point of the fluid phase in the the cross-section

plane s ¼ 0 is equivalent to the choice of a current point
in all the volume of the fluid phase. This last approach

will be here followed.

As the fluid is transparent, extinction occurs when a

ray issued from a point M of the fluid phase hits a solid

phase wall element I (see Fig. 2). This phenomenon only
depends on the porous medium geometry and does not

depend on radiation frequency. In the case considered

here of an opaque solid, the ray is partially absorbed and

partially reflected. From a physical point of view, the

extinction of any ray is total at each point I . Indeed, the
possible reflected ray corresponds to the propagation of

radiation in another direction. The associated multiple

scattering effect could be taken into account by the use

of the radiative transfer equation, which is not the topic

of the present paper.
Fig. 1. (a) Schematic cross-section of an actual porous medium;

(b) equivalent continuous semi-transparent medium.
In the Monte Carlo model, applied at the local scale,

a current ray starts, as previously justified, from any

random point MðrÞ of the fluid phase. Total extinction
(absorption and reflection) only occurs at the point I,
which is the intersection of the ray with the interface.

The extinction cumulated distribution function GeðsÞ is
then equal, in this local model, to the cumulated distri-

bution function of the length MI . This function only
depends on the geometrical structure of the medium. In

practice, it is defined by

GeðsÞ ¼
Z s

0

Feðs0Þds0 ¼
1

VF

1

4p

Z s

0

Z
VF

Z
4p

d½s0 � s0ðr; uÞ�

� dXðuÞdrds0; ð1Þ

where s is the abscissa from point M along the current

ray, Feðs0Þ the extinction distribution function, VF the
fluid phase volume, dXðuÞ the elementary solid angle
associated with the current unit vector u of the ray MI,
d the Dirac d function and s0ðr; uÞ the length jMI j.
In the continuous medium approach, the extinction is

characterized by an extinction coefficient b. The extinc-
tion distribution function fe and the extinction cumu-
lated distribution function ge are defined by

feðsÞ ¼ b expð�bsÞ; ð2Þ

geðsÞ ¼ 1� expð�bsÞ: ð3Þ

b is determined by identification of GeðsÞ and geðsÞ by a
least square fit method. The validity range of this iden-

tification can be deduced from the standard deviation

associated with this method.

In the local model, the probability of absorption in

the range ½s; sþ ds� is

dPaðsÞ ¼ FaðsÞds

¼ 1

VF

1

4p

Z
VF

Z
4p

a0
mfci½nðr; uÞ; u�g

� d½s� s0ðr; uÞ�dXðuÞdrds; ð4Þ
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where a0
mðciÞ is the directional absorption coefficient of

the opaque interface, which depends on ci, angle be-
tween �u and n the local normal unit vector towards the

fluid phase at point I (Fig. 2).
The corresponding probability of absorption for the

homogenized continuous medium model, dpaðsÞ is de-
fined as

dpaðsÞ ¼ faðsÞds ¼ expð�bsÞjm ds; ð5Þ

where jm is the continuous medium absorption coeffi-

cient. As b has been previously obtained, jm can be de-

termined by identifying GaðsÞ, calculated by the Monte
Carlo method, i.e.

GaðsÞ ¼
Z s

0

Faðs0Þds0; ð6Þ

with the corresponding function in the continuous me-

dium approach, i.e.Z s

0

faðs0Þds0 ¼ ½1� expð�bsÞ�jm=b: ð7Þ

Let us notice that, in the particular case in which the

incidence cosine

li ¼ �n 
 u ¼ cos ci ð8Þ

is statistically independent of the other parameters

characterizing a current ray, in particular of s0ðr; uÞ, Eq.
(4) simplifies as follows, by considering that the aver-

aged value of the product of two statistically indepen-

dent quantities is equal to the product of the averaged

quantities, i.e.

FaðsÞds ¼ FeðsÞds
Z 1

0

a0
mðliÞFiðliÞdli; ð9Þ

where FiðliÞ is the distribution function of li.
On the other hand, let us notice that, if am is inde-

pendent of ci (case of the diffuse reflection law), we
simply obtain

FaðsÞ ¼ amdiffFeðsÞ; ð10Þ

which leads to

jmdiff ¼ bamdiff : ð11Þ
2.2. Optically thin medium asymptotic case

In the asymptotic case of an optically thin, statisti-

cally isotropic and homogeneous porous medium, both

the extinction coefficient b and the absorption coefficient
jm have simple expressions, whatever are the reflection

law of the interface and the morphology of the porous

medium. These expressions will be used in the following

as references.

As, in these conditions, no self-absorption pheno-

menon occurs, the flux emitted by an elementary fluid
volume dVF in the local model can be identified with the
same flux expressed in the continuous medium ap-

proach, i.e.

pahm I
�
m ðT ÞdS ¼ 4pjmI�m ðT ÞdVF; ð12Þ

where dS is the interface area in the element dVF, I�m ðT Þ
the equilibrium intensity and ahm the hemispherical ab-
sorptivity of the interface, given by

ahm ¼ p�1
Z
2p

a0
mðciÞ cosðciÞdX: ð13Þ

Finally, at the optically thin limit, jm is given by

jm ¼ ðA=4Þahm ; ð14Þ

whereA is the specific interface area per unit volume of

fluid phase.

The extinction coefficient can also be simply ex-

pressed at the optically thin limit. As the medium has

been assumed statistically isotropic, we only consider

one incident direction u normal to an arbitrary cross-

section S of the fluid phase. bds is the probability that
any ray issued from a point M of S in the direction u,

reaches the interface at a point IðRÞ such as MI is less
than ds, i.e.

bds ¼ lim
S!1

Z
dR

�
� nðRÞ 
 udR=S

�
: ð15Þ

In Eq. (15), dR is the fraction of the interface area in the
volumeSds viewed in the direction u, which is equal, as

the interface is randomly oriented, to SdsA=2 (only
half of the area is viewed in the direction u). For the

same reason, Eq. (15) becomes

b ¼ A

Z p=2

0

2p sinðciÞ
4p

cosðciÞdci ¼ A=4; ð16Þ

which represents the asymptotic expression of b for a
statistically isotropic and homogeneous porous medium

at the optically thin limit.

2.3. Phase function

In as much as the scattering coefficient has been de-

fined, the scattering phase function pmðu; urÞ is the dis-
tribution function associated with the probability that,

in the spherical frame of axis u, the reflected ray belongs

to a given elementary solid angle dXrðurÞ, i.e.

pmðu; urÞdXrðurÞ

¼
R
VF

q00
m ½u; ur; nðu; rÞ�u 
 nðu; rÞdrdXrðurÞR

4p

R
VF

q00
m ½u; u0

r; nðu; rÞ�u 
 nðu; rÞdrdXrðu0
rÞ
; ð17Þ

where q00
m ðu; ur; nÞ is the bi-directional reflectivity in the

spherical frame of axis n, as defined in [18]. In Eq. (17),

q00
m is taken equal to zero if ur is towards the solid phase.
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As a consequence of the statistical isotropy of the

porous medium, the scattering phase function is inde-

pendent of the incident direction and, more restrictively,

assumed only dependent on the cosine ls of the scat-
tering angle between the incident and reflected rays, i.e.

ls ¼ u 
 ur: ð18Þ

Under this assumption, pm becomes
pmðlsÞ ¼
R
VF

R
4p

R
4p dðu 
 ur � lsÞq00

m ½u; ur; nðu; rÞ�u 
 nðu; rÞdXðuÞdXrðurÞdrR
VF

R
4p

R
4p q00

m ½u; ur; nðu; rÞ�u 
 nðu; rÞdXðuÞdXrðurÞdr
: ð19Þ
pmðlsÞ is by definition the distribution function of ls,
which is expressed, in the local frame centered in a point

I of the interface characterized by the normal n, as

�ls ¼ lilr þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� l2i Þð1� l2r Þ

q
cosð/i � /rÞ; ð20Þ

where

li ¼ �n 
 u; lr ¼ n 
 ur ð21Þ

are the cosines associated with the incident and reflected

angles, respectively, and p þ /i and /r the azimuthes of
the corresponding rays, respectively.

The distribution function F ðliÞ of li is easily ob-
tained in the previous Monte Carlo calculation and the

reflection law is assumed known. Consequently, the

phase function pmðlsÞ is directly obtained. This approach
can easily be generalized to a polarized radiation.

The previous approach is general. In the following,

we only consider diffuse and specular reflection laws or

their combination. In the case of a diffuse reflection law,

/r and lr are uniformly distributed in the ranges ½0; 2p½
and ½0; 1�, respectively, and the spectral absorptivity amdiff

depends neither on li nor on /i. On the other hand, the
specular reflection law is defined by

li ¼ lr; cosð/i � /rÞ ¼ �1 ð22Þ

and we use here the approximated expression

a0
mspecðliÞ ¼ 1� q0h

mspecðliÞ ¼ ð3=2Þahmspecli; ð23Þ

where q0h
mspecðliÞ is the directional-hemispherical reflec-

tivity defined in the sense of [18] and ahmspec the hemi-
spherical absorptivity given by Eq. (13).

2.4. Porous medium characterization

The practical identification of b, jm and rm requires

the definition of a reference length scale which charac-

terizes the porous medium. In practice, the transverse

length scale D is

D ¼ 4=A: ð24Þ

In the particular case of ducts, D is equal to the hy-

draulic diameter. It appears from Eq. (16) that D is also
the extinction length b�1 at the optically thin limit. It is

worth noticing that the choice of this length scale is

pertinent as long as the solid is opaque. Indeed, radiative

transfer occurs only in the fluid phase and the homog-

enized continuous medium introduced here is only

equivalent to the fluid phase and the interface, as dis-

cussed in [19,20] and in Section 5.

As the porous medium is considered statistically
isotropic and homogeneous, A can be easily calculated

from the chord length distribution function of the fluid

phase EðsÞ. A chord is defined as a segment of the fluid
phase which links two interface points I and I 0. From
this definition, it can be easily established [21] that

EðsÞ ¼ �ð4=AÞdFe=ds; ð25Þ

where FeðsÞ is the distribution function introduced in Eq.
(1). It is worthy of notice that Eq. (25) is more general

than the classical relations [22–24]:

A ¼ 4
Z 1

0

sEðsÞds
�

; ð26Þ

Feð0Þ ¼ A=4: ð27Þ
3. Application to overlapping transparent or opaque

spheres

The general method is here applied to virtual porous

media, which are sets of Dispersed radius Overlapping

Opaque solid Spheres (DOOS) in a transparent fluid or

of Dispersed radius Overlapping Transparent fluid

Spheres (DOTS) in a solid phase. The sphere centers are

randomly located. Moreover, these systems allow fast

calculations of I and of li.

3.1. Porous medium characterization

Let us first consider a porous medium of DOOS type,

characterized by a sphere center density n (in m�3) and

by a given radius distribution function fRðRÞ. The po-
rosityP of this porous medium and the specific interface

area per unit volume of the fluid phase A are given by

[21,25,26]:

nþ ¼ nhRi34p=3;
P ¼ exp½�nþhR3i=hRi3�;
Aþ ¼ AhRi ¼ 3nþðhR2i=hRi2Þ

¼ �3ðhR2ihRi=hR3iÞ ln½P�;

ð28Þ
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where h i stands for averaging over the sphere radius
distribution. In the particular case of a set of Identical

Overlapping Opaque Spheres (IOOS), i.e. DOOS model

with a Dirac d radius distribution, these expressions
simplify into [24–26]

nþ ¼ nR34p=3;

P ¼ exp½�nþ�;
Aþ ¼ AR ¼ 3nþ ¼ �3 ln½P�:

ð29Þ

Let us now consider a porous medium of DOTS type.

The expressions of P andA can be easily deduced from

Eqs. (28):

nþ ¼ nhRi34p=3;
P ¼ 1� exp½�nþhR3i=hRi3�;
Aþ ¼ AhRi

¼ 3nþðhR2i=hRi2Þ=ðexp½nþhR3i=hRi3� � 1Þ
¼ �3ðhR2ihRi=hR3iÞ lnð1� PÞðP�1 � 1Þ:

ð30Þ

In the particular case of a set of Identical Overlapping

Transparent Spheres (IOTS), i.e. DOTS model with a

Dirac d radius distribution, these expressions simplify in

nþ ¼ nR34p=3;

P ¼ 1� exp½�nþ�;
Aþ ¼ �3 lnð1� PÞðP�1 � 1Þ

¼ 3nþ=½expðnþÞ � 1�:

ð31Þ
3.2. Trajectories

An important number of trajectories MI are gener-
ated in the Monte Carlo method in order to obtain Ge,
Ga and FiðliÞ. We have typically considered, for a given
virtual porous medium defined by n, P or A, 104 geo-

metrical realizations (given sets of center locations and

radii). For each geometrical realization, we have typi-

cally used 100 trajectories (defined by M and I), i.e. 106

trajectories for a given virtual porous medium.

In practice, the calculations of trajectories are carried

out inside a cube of edge 1. All the starting points M of

the trajectories are stochastically chosen in a cube of

edge 0.2, centered in the previous one. Any trajectoryMI
of length less than 0.4 is then completely included in the

cube of edge 1. As discussed in Section 3.3, for a given

value of A or of the porosity P, the considered trajec-
tory lengths are less than smax, i.e.

smax ¼ 3D ¼ 12=A ¼ 12hRi=Aþ: ð32Þ

Consequently, for a given value ofA, smax is taken equal
to 0.4, and, for a given radius distribution function, hRi
is taken equal to Aþ=30. Typically 100–20,000 over-
lapping spheres are considered, depending on A or P
values, for a given geometrical realization.
3.3. Practical b and jm identification

The practical b and jm identification is here detailed

for DOOS or DOTS morphology models and diffuse or

specular reflection law. The case of the combination of

these laws will be discussed in Section 5. When consid-

ering the diffuse reflection law, only b has to be identi-
fied. In this case, Eq. (11) links jmdiff to b. When
considering the specular reflection law, both b and jmspec

have to be identified.

For DOOS model, the chord distribution in the fluid

phase is rigorously exponential [21], which is an ideal

case:

EðsÞ ¼ �ð3=4ÞðhR2i=hR3iÞ ln½P�P½ð3=4ÞðhR2i=hR3iÞs�

¼ ðA=4Þ exp½�ðA=4Þs�: ð33Þ

As a consequence, 1� Ge is actually exponential and Ge
can be rigorously identified to ge, which leads to

b ¼ A=4; ð34Þ

a result identical to that obtained at the optically thin

limit. Moreover, the li distribution function FiðliÞ is
linear:

FiðliÞ ¼ 2li; ð35Þ

a result which can be proved as follows. Let us consider

a cylindrical frame of center M and axis u and statistical

realizations of DOOS media (characterized by sets of

centers Cjðrj; zj; hjÞ and radii Rj) for which M lays in the

fluid phase. FiðliÞdli is the probability over the statis-
tical realizations that li6� n 
 u6 li þ dli. In a given
realization, the ray ðM ; uÞ hits the sphere k of center Ck

characterized by the non-dimensional radial coordinate

rþk ¼ rk=Rk . As, on one hand, the random variable rþ
2

k is

uniformly distributed in the range ½0; 1� and, on the
other hand,

ðnk 
 uÞ2 ¼ 1� rþ
2

k ; ð36Þ

l2i is uniformly distributed in the range ½0; 1�, indepen-
dently of the distance MI and FiðliÞ is linear, given by
Eq. (35) and is statistically independent of the other

parameters characterizing a current ray. As a bench-

mark case, this result has also been obtained by the

Monte Carlo simulation with a relative standard devia-

tion less than 10�6.

In these conditions, the specular reflection law leads

from Eqs. (9), (13) and (35) to

FaðsÞ ¼ FeðsÞ
Z 1

0

a0
mspecðliÞFiðliÞdli ¼ FeðsÞahmspec ð37Þ

and

jmspec ¼ ðA=4Þahmspec ¼ bahmspec: ð38Þ
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In conclusion, in the case of the DOOS model, jm is

rigorously identified, as b has been, and is equal to the
result at the optically thin limit.

On the contrary, for DOTS models the chord distri-

bution function is not exponential. An optimal value of

bþ ¼ bD ¼ 4b=A ð39Þ

is identified by minimizing the following relative error

function:

EeðbþÞ ¼
XN
i¼0

½Geðsþi Þ
(

� geðsþi Þ�
2

XN
i¼0

½1
,

�Geðsþi Þ�
2

)1=2

;

ð40Þ

where sþi ¼ si=D are the calculation discretized lengths,

chosen in the range ½0; 3� in order to cover the whole
practical range of optical thickness (defined from the

asymptotic value of b at the optically thin limit). In

practice, the actual optical thickness is larger than this

estimated value (i.e. bþ P 1) and the actually considered

optical thickness range is wider than ½0; 3�. Typically, N
is chosen equal to 200. It has been established that a

better spatial discretization ðN ¼ 400Þ leads to a typical
relative variation of the optimal b value less than

5� 10�5. On the contrary, the discretization N ¼ 100
leads to a typical relative variation of the optimal b
value of about 10�2. No significant variation of Ee is

observed with a discretization better than N ¼ 200.
An example of bþ identification is illustrated in Fig. 3

in the particular case of IOTS model (fixed radii). The

extinction cumulated distribution function Ge is com-
pared: (i) with its adjustment; (ii) with the optically thin

limit result

Ge ¼ 1� exp½�sþ�: ð41Þ
Fig. 3. b identification: (++) GeðsþÞ for IOTS medium with

Aþ ¼ 1:698.
For a specular reflection law, a non-dimensional ab-

sorption coefficient jþ, defined by

jþ ¼ jmspec=ðbahmspecÞ; ð42Þ

where b is the previously determined value, is also in-
troduced in the case of the DOTS model.

As b has been previously determined, jþ can be ob-

tained by identifying G�
aðsÞ, calculated by the Monte

Carlo method, i.e.

G�
aðsÞ ¼

Z 1

s
Faðs0Þds0; ð43Þ

with the corresponding function in the continuous me-

dium approach, i.e.Z 1

s
faðs0Þds0 ¼ expð�bsÞjmspec=b; ð44Þ

which is equivalent to the identification of Eqs. (6) and

(7). In this case also, sþi is taken in the range ½0; 3�.
In practice, the relative error function

EaðjþÞ ¼
XN
i¼0

fG�
aðsþi Þ

(
� ahmspecj

þ exp½ � bþsþi �g
2

XN
i¼0

½G�
aðsþi Þ�

2

, )1=2

ð45Þ

is minimized. As in the case of the fit of bþ, N is chosen
equal to 200.

Optimal values of bþ and the associated least square

fit relative errors EeðbþÞ are plotted versusAþ and P in

Figs. 4 and 5, respectively, for DOTS model and three

different radius distributions: (i) Dirac distribution

(IOTS model); (ii) Gauss distribution. The radii are then
Fig. 4. Identified values of bþ and corresponding relative error

Ee: (+) IOTS model; (4) DOTS model with a Gaussian radius
distribution; (�) DOTS model with an uniform radius distri-

bution; (––) Eq. (46).



Fig. 5. Identified values of bþ and corresponding relative error

Ee: (+) IOTS model; (4) DOTS model with a Gaussian radius
distribution; (�) DOTS model with an uniform radius distri-

bution; (––) Eq. (46).

Fig. 7. Identified values of jþ and corresponding relative error

Ea: (}) DOTS model with a Gaussian radius distribution; (––)
Eq. (47).
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given by hRimin½maxð1þ 0:25z; 0:01Þ; 1:99� in which z
is a Gaussian random variable, such as hzi ¼ 0 and
hz2i ¼ 1; (iii) uniform distribution. The radii are then

given by hRi½1þ 0:9� ð2y � 1Þ� in which y is a uniform
random variable in ½0; 1�.
In case (ii) with a specular reflection law, optimal

values of jþ and the associated least square fit relative

errors EaðjþÞ are plotted versus Aþ and P in Figs. 6

and 7, respectively.

For expressing bþ in the three cases (i)–(iii), the

porosity P is a more pertinent parameter than the non-

dimensional specific area per unit fluid volume Aþ.

Indeed, the radius distribution slightly modifies the re-

lation between bþ and P, which has been adjusted by a
linear function with a 0.023 least square relative stan-

dard deviation, i.e.
Fig. 6. Identified values of jþ and corresponding relative error

Ea: (}) DOTS model with a Gaussian radius distribution; (––)
Eq. (47).
bþ � 1þ 0:90ð1� PÞ: ð46Þ

As discussed before, bþ is equal to 1 at the optically thin

limit (P � 1 or Aþ � 0). It is worth of notice that the
least square fit error EeðbþÞ increases when the porosity
decreases. A criterion of validity of the extinction ho-

mogenization hypothesis can be deduced: for a given

maximum relative error EeðbþÞ ¼ 0:05, the homogeni-
zation is valid for P in the range ½0:625; 1�, in the case of
the studied DOTS media.

It has already been shown that jþ is equal to unity

for a diffuse reflection law. For expressing jþ, the non-

dimensional specific area per unit fluid volumeAþ is, on

the contrary of bþ case, the most pertinent parameter.

Indeed, for the specular reflection law given by Eqs. (22)

and (23), jþ has been adjusted, in the most common case

of a DOTS model with a Gaussian radius distribution,

by a linear function vs. Aþ with a 0.006 least square

relative error, as shown in Fig. 6, i.e.

jþ � 1þ 0:35ðAþ=4Þ: ð47Þ

Results very closed of Eq. (47) have been obtained for a

IOTS model and a DOTS model with an uniform radius

distribution. The least square fit error EaðjþÞ increases
as Aþ increases and is lower than the corresponding

error for extinction. As a consequence, the validity range

obtained for extinction is also valid for absorption.
4. Phase function identification

In this section, the expressions of the phase function

pmðlsÞ are calculated analytically or from the Monte

Carlo method from FiðliÞ and are discussed, both in the
cases of DOOS or DOTS models, with a diffuse or a

specular reflection law. Let us recall that pmðlsÞ is the



Fig. 9. Identified phase functions obtained from a IOTS model.

Diffuse reflection (long-dashed). Specular reflection: qhm ¼ 0:33
(solid); qhm ¼ 0:5 (dashed); qhm ¼ 0:75 (dotted); qhm ¼ 1 (dash-
dotted).
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distribution function of the scattering cosine ls which is
defined by Eq. (18) and can be expressed by Eq. (20)

from the li distribution function FiðliÞ and the reflexion
law.

In the case of the DOOS model, the li distribution
function FiðliÞ is given by Eq. (35). The specular re-
flection law modeled by Eqs. (22) and (23) leads to the

following analytical results:

ls ¼ 1� 2l2i ;
pmspecðlsÞ ¼ ½1� ð3=2Þahmspec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� lsÞ=2

p
�=½2ð1� ahmspecÞ�:

ð48Þ

For a diffuse reflection law, pmdiffðlsÞ is numerically cal-
culated from Eq. (20) by a Monte Carlo method. The

Monte Carlo result is plotted in Fig. 8 and has been

adjusted by the linear function

pmdiffðlsÞ ¼ ð1� lsÞ=2; ð49Þ

with an excellent 8� 10�5 relative least square fit stan-
dard deviation. This simple expression has to be estab-

lished, to our knowledge.

In the case of a DOTS model, the distribution func-

tion FiðliÞ is obtained from the Monte Carlo simulations
as explained in Section 2. The specular reflection law,

modeled by Eqs. (22) and (23), leads to

ls ¼ 1� 2l2i ;

pmspecðlsÞdls

¼
FiðliÞq0

mspecðliÞdliR 1
0
FiðliÞq0

mspecðliÞdli

¼
Fi½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� lsÞ=2

p
�q0

mspec½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� lsÞ=2

p
�

½4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� lsÞ=2

p R 1
0
FiðyÞq0

mspecðyÞdy�
dls:

ð50Þ
Fig. 8. Identified phase functions obtained from a DOOS

model. Diffuse reflection (long-dashed). Specular reflection:

qhm ¼ 0:33 (solid); qhm ¼ 0:5 (dashed); qhm ¼ 0:75 (dotted); qhm ¼ 1
(dash-dotted).
For a diffuse reflection law, pmdiffðlsÞ is also calculated
numerically from Eq. (20) by a Monte Carlo method.

Examples of identified phase functions are plotted in

Figs. 8 and 9 for DOOS and IOTS models, respectively.

When considering a diffuse reflection law, forward

scattering is weak in as much as it requires both incident

and scattered grazing rays. On the contrary, back scat-

tering is then very strong. On the other hand, when

considering the specular reflection law with directional

reflectivity given by Eq. (23), grazing rays are more re-

flected than other rays; consequently, forward scattering

is strong and back scattering weak, as shown in Figs. 8

and 9. This effect decreases as qhm increases up to 1. In-
deed, at this limit, there is no more difference between

grazing rays and normal reflecting rays.

As shown in Fig. 9, the phase functions obtained in

the case of a IOTS model with a specular reflection law

are not monotonic. This behavior is explained by the

competition between two effects: (i) grazing rays are

more reflected than other rays; (ii) the concavity of the

local structure drastically reduces the weight of the

grazing rays and, consequently, the forward scattering.
5. Practical implementation of data

The previous results can be generalized to the case of

a linear combination of diffuse and specular reflection

laws at the interface. Let us notice that the extinction

coefficient b of the equivalent medium is independent of
the reflection law for a given porous morphology. The

directional-hemispherical reflectivity q0h
m ðliÞ is written

q0hðl Þ ¼ kq0h ðl Þ þ ð1� kÞq ; 06 k6 1; ð51Þ
m i mspec i mdiff
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where q0h
mspec is given by Eq. (23) and qmdiff ¼ 1� amdiff .

The directional absorptivity of such an interface is then

(see for instance [27])

a0
mðliÞ ¼ ka0

mspecðliÞ þ ð1� kÞamdiff : ð52Þ

Pure specular and diffuse absorption coefficients jmspec

and jmdiff , associated with a0
mspecðliÞ and amdiff , respec-

tively, have been defined as

jmspec ¼ ðAbþ=4Þjþahmspec; jmdiff ¼ ðAbþ=4Þahmdiff ; ð53Þ

where ahmspec is the specular hemispherical absorptivity;
jþ is defined by Eq. (42) and bþ by Eq. (39). As the

actual contributions of photons, the diffuse and specular

contributions are additive. The equivalent medium ab-

sorption coefficient is then

jm ¼ kjmspec þ ð1� kÞjmdiff : ð54Þ

Pure specular and diffuse scattering coefficients rmspec and

rmdiff are also defined by

rmspec ¼ ðAbþ=4Þð1� jþahmspecÞ;
rmdiff ¼ ðAbþ=4Þð1� amdiffÞ:

ð55Þ

The equivalent medium scattering coefficient is then

rm ¼ krmspec þ ð1� kÞrmdiff ; ð56Þ

obviously equal to b � jm.

The phase function pmðlsÞ is also a linear combination
of pmspecðlsÞ and pmdiffðlsÞ, the pure specular and diffuse
phase functions defined in Section 4, respectively, i.e.

pmðlsÞ ¼ ðkrmspec=rmÞpmspecðlsÞ þ ½ð1� kÞrmdiff=rm�pmdiffðlsÞ:
ð57Þ

The radiative transfer equation has to be applied, with

the previously identified coefficients jm and rm and phase

function pm, and averaged on a volume element dVF of
the fluid phase included in the current element dV of the
porous medium. Let us notice, I 0mF the corresponding
averaged local directional intensity. In practice, we

consider in the continuous medium approach, for which

the separation between solid and fluid phases vanishes,

an equivalent averaged local directional intensity I 0m,
defined by

I 0m dV dXdm ¼ I 0mF dVF dXdm; ð58Þ

i.e. I 0m ¼ PI 0mF. Consequently, as in [20], the radiative
power per unit volume PR in use in the continuous

medium approach is equal to

PR ¼ PPRF ; ð59Þ

where PRF is calculated from the identified data. Briefly

summarized, the radiative transfer equation is used with

the identified data and P is introduced in the expression

of PR. Boundaries conditions have to be written, as in
[20], by taking separately account of the solid boundary

surface, opaque in the present case, and of the fluid

boundary surface characterized by I 0mF.
6. Conclusion

A general model for directly characterizing the radi-

ative properties of porous media, which can be from the

radiative point of view represented by a continuous

medium, has been developed by using a Monte Carlo

technique. Two original features of this method are: (i)

to be independent of any radiative transfer model; (ii) to

lead directly to the scattering phase function.

The model has been applied to both sets of DOOS in

a transparent fluid and sets of DOTS in an opaque solid.

In this model, the solid phase is assumed opaque, the

fluid phase transparent and diffraction effects neglige-

able. An identification process of radiative data could be

divided into three steps: (i) experimental determination

and numerization of the morphology of slabs of an ac-

tual material; (ii) Monte Carlo calculations, defined in

the present paper, either on the actual numerized data or

by using an equivalent DOOS or DOTS model for the

material; (iii) experimental validation from comparisons

of predicted directional reflectivity and transmissivity of

porous slabs and direct corresponding measurements on

samples used in the morphology determination. The

interest of this approach is to replace an usual inverse

method scheme by only direct approaches.
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